
Quantum Circuit Simulation
Object Oriented Programming in C++ Final Project

Ksenija Kovalenka, 10485506

May 20, 2023

Abstract

This report describes the implementation of the quantum circuit simulator using Object

Oriented Programming (OOP) in C++. The created program allows one to construct circuits

with up to 6 quantum bits (qubits) and apply the selection of single-qubit and two-qubit gates.

An example circuit is included, which demonstrates all the basic features of the program.

The available gates construct the complete basis and hence allow in principle any quantum

computation within the qubit limit. Amongst other attributes, the source code is featuring a

custom matrix class for gate representation, utilising smart pointers for clear ownership and

safe memory management.

1 Introduction

In recent years, quantum computing has been gaining popularity among researchers and busi-

nesses as it claims to shift the paradigm of information processing. It has already been shown

to be extremely powerful for certain types of problems and its rapid development continues with

the invention of new types of algorithms and hardware [1]. Achieving the advantage of using

quantum computation over traditional classical computers comes closer to reality with the Noisy

Intermediate Scale Quantum (NISQ) era, prompting large interest not only from the academic

but also the industry sector [2]. Although there are certain challenges tied to the fact that co-

herent quantum states are extremely fragile and struggle to hold memory, quantum computation

provides numerous exciting opportunities in the study of many-body complex quantum systems

and acceleration of minimisation algorithms. This report explores the mechanics of quantum

computation by describing a created circuit simulation with a set of gate components operating

on qubit states. An example circuit is discussed, as well as the ability to construct a fully custom

quantum computation.

2 Theory

Quantum computers operate on quantum bits (qubits) instead of classical bits. The distinctive

feature of qubits is their quantum mechanical behaviour allowing an exhibition of quantum

1



phenomena of superposition and entanglement. Utilising these features allows for computational

speed-up due to the exponential increase in qubit state-space dimensionality with the number of

qubits in the system. A single qubit state can be expressed as a superposition of two basis states

|0⟩ and |1⟩. The basis is arbitrarily chosen to be the eigenstates of the Pauli Z matrix, which

could represent a spin projection of the system onto the z-direction, as an example. Each state

in the superposition has a complex amplitude (z0 and z1), so the total state |ψ⟩ can be described

as follows

|ψ⟩ = z0 |0⟩+ z1 |1⟩ = z0

(
1

0

)
+ z1

(
0

1

)
=

(
z0

z1

)
. (1)

The result of the computation is given by the measurement of the qubit state. When the qubit

is measured, its superposition state collapses into one of the basis states with the corresponding

probabilities, given by the squares of their respective amplitudes (|z|2 = z · z∗, where z∗ is the

complex conjugate of z). The measurement and hence the result of the computation is indepen-

dent of the overall phase of the qubit state | |ψ⟩ |2 = |eiδ |ψ⟩ |2. This introduces the constraint

of the qubit state, which allows us to fully specify the state using 3 real parameters instead of

4 real (or 2 complex) ones. There is an additional constraint, provided by the conservation of

total probability (|z0|2 + |z1|2 = 1). Thus, the most general qubits state can be expressed as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (2)

where θ and ϕ are new parameters [3]. This way of writing the qubit state allows a famous Bloch

sphere qubit representation, shown in Figure 1.

Figure 1: Bloch sphere representation of the normalised qubit state |ψ⟩.

Qubits are manipulated with quantum gates, which can rotate the states on the Bloch sphere,

introduce the relative phase shift between the basis states, swap two qubits, etc. The manipu-

lations are mathematically represented by the 2x2 gate matrix multiplying the 2x1 state vector

of a qubit. Manipulations on the several qubits are represented in terms of the tensor product1

1Tensor product definition: https://mathworld.wolfram.com/VectorSpaceTensorProduct.html

2



of qubit states and gate matrices [4]. For example, applying gate A to state |ψ1⟩ and B to state

|ψ2⟩ is calculated as follows

A |ψ1⟩ ⊗B |ψ2⟩ = (A⊗B) |ψ1⟩ ⊗ |ψ2⟩ . (3)

Entanglement is provided by the gates E represented by the 4x4 matricies and acting as

E(|ψ1⟩ ⊗ |ψ2⟩) on the two qubits at the same time.

3 Code Design and Implementation

3.1 Project Aim

This project aims to construct a simulation of a fully arbitrary quantum computation, exploiting

OOP in C++. The created program makes use of the main OOP principles: encapsulation,

inheritance, polymorphism and abstraction, which are further discussed below (Section 3.3).

The available selection of gates represents the universal set i.e. any unitary evolution of the

system can be represented with a finite series of gates in the set. Such a set consists of three

rotations, a phase shift and a controlled not (CNOT) gate for basic entanglement. Additional

widely used gates are included for further convenience. All gate matrices are specified in the

components.cpp file.

3.2 Program Flow

Quantum computation is performed in several steps as follows:

1. Pick the number of qubits in the circuit.

2. Initialise all qubit states to |0⟩.

3. Perform the unitary evolution by constructing and applying quantum gates.

4. Perform a measurement by calculating the probabilities of each state.

Gate construction happens in 2 steps. A circuit consists of gate layers. All gates within a single

layer are applied in parallel, whereas all layers are applied in series to construct a total circuit.

All gates in a layer have to be combined using a tensor product as discussed in Section 2. If

there is no gate on a qubit in the layer, the identity matrix is inserted into the tensor product, so

that all of the combined layer matrices have the same dimensions. When all layers are specified,

combined layer matrices are applied to the initialised combined qubit state in succession using

Equation 3. An example of layer structure and application is shown in Figure 3 for greater

clarity.

3



3.3 Class Structure

The main classes used in this program are shown in Figure 2. The modularity of the code means

that each class is implemented separately with the corresponding header .h and .cpp files, and

are linked together in the main.cpp file.

Figure 2: Unified Modeling Language diagram for class structure for the program, featuring main

class dependencies (represented with line arrows) and an example of inheritance (represented with

empty head arrows) on the component class.

All the data is private or protected (employing encapsulation) and can be accessed only by friend

classes or through get member functions. A matrix class lays in the basis of all computations.

The component class uses it for gate matrix representation and circuit utilises it in layer and

qubit state matrices. All gates in the circuit inherit from the component class to implement

polymorphism in layer construction, which makes the program scalable. Note that RotationX

4



class in Figure 2 is only an example of many more gate classes in the program. Additionally, the

program has a qubit class in the component.h file for additional bookkeeping. This class is not

used in the main file of this program, but it can be built upon if one decides, for example, to

visualise qubits as in Figure 1.

Matrix Class

Matrix class allows the user to construct arbitrary size matrices with complex entries. It makes

use of smart pointers to manage matrix data memory and has a number of overloaded operators.

It has custom assignment operators employing deep copying and useful matrix operations like

multiplication and matrix product.

Component Class

Component class in an abstract class with a virtual draw() member function to display the

component in the circuit diagram. This base class implements a matrix representation of the

quantum gates, which inherit from it. Some of the derived classes have extra parameters, and

they all overwrite a virtual draw() function with putting their name in the output. Two-qubit

gates overwrite the 2x2 default component matrix with a 4x4.

Circuit Class

Circuit class makes the main computation. It has member functions to implement all the compu-

tation steps described in Section 3.2. Circuit initialisation takes in an integer number of qubits.

The state of the qubits is then initialised with .initialise() to |0⟩ ⊗ ... ⊗ |0⟩ = (10...0)T ,

meaning that all the qubits in the combined state are pointing up the z-axis. Components can

be added to a layer of gates using .add() member function, which takes an argument of the

pointer to a specified component and a target qubit. Two qubit gates are applied to the speci-

fied qubit and the next one in a row. For example, an entry .add(&CNOT, 2) adds a two-qubit

gate CNOT, which is applied to qubits 2 and 3. When the layer is ready, it must be combined

using .combine(), which performs a tensor product of the corresponding matrices and puts the

result in the queue called component array. Finally, .run() function is used to apply all the

queued gate layers one by one and .print state() outputs the resulting state vector (or indeed

any other intermediate state of the calculation).

3.4 Program Functionality

The program has 11 available gates. The instances of the static gate components (i.e. ones which

do not require a parameter) are created on stack, allowing them to get destroyed with the default

destructors when the program goes out of the scope of the main function. The main function

consists of an example circuit run (shown in Figure 3) and a user input circuit, each controlled

5



by the bool example and bool circuit, respectively. When both are set as true, two circuit

objects are created.

Example

An example circuit shown in Figure 3 has all the basic features of the circuit construction. It has

several layers, with gates applied to different qubits. However, qubit 2 still has two consecutive

operations in layers 2 and 3. Layer 2 features a 2-qubit CNOT gate and X gate applied in

parallel. Layer 3 shows the parameterised Ry(π) gate action.

Layer 1 Layer 2 Layer 3

qubit 1

qubit 2

qubit 3

Figure 3: Example circuit, showcasing main circuit construction features.

User Interface

The user is first asked to give the number of qubits for the circuit. Then, the component library

gets printed out and they are asked to complete the first layer by entering the gate key and

which qubit they wish to apply the gate to. After this, the program finds the corresponding gate

in the library in the component library map by the corresponding key and adds it to the layer

map inside the circuit. When the layer is completed, the user is asked whether they would like

to add another one, and the process repeats. A flow diagram for the circuit building by the user

is shown in Figure 4 for further clarity. The procedure is slightly more complicated with the

parameterised gates. If the user enters the key which corresponds to one of such gates, they are

prompted to give a parameter. There is also an option to go with the default version of the gate.

However, if the custom parameter is chosen, an instance of a new parameterised gate is created.

The memory for it must be dynamically allocated on heap as the component objects must live

outside the layer construction loop for the execution of the .combine() command. The custom

component is given a new key to distinguish it from the default components. The memory is

freed using the delete command after the .combine() is executed.

6



1 // allocation

2 if (key == "rx") {

3 component_library.insert(std:: make_pair("rxc", new RotationX(gate_parameter)

));

4 key = "rxc";

5 }

6 // other code ...

7 // deallocation

8 for (const auto& key_value : component_library) {

9 if (key_value.first == "rxc" || key_value.first == "ryc" || key_value.first

== "rzc" || key_value.first == "pc") {

10 delete key_value.second;

11 }

12 }

Listing 1: An example of dynamic memory allocation on heap.

Figure 4: Flowchart of the user circuit construction process.

Validation

The program utilises various types of validation. Firstly, integer and double inputs in the par-

ticular range are validated by the extra template function, defined outside the main routine.

The template is needed to account for both types of data. Secondly, the user is not allowed

to overwrite the gate components, by putting a second gate on the qubit which already has a

gate in the same layer. One qubit can have multiple gates applied to it, but it must be done in

separate layers. To account for that, there is a vector which keeps track of the occupied qubits.

1 template <typename T>

2 T get_value(T min , T max) {

3 T value;

4 // function implementation ...

Listing 2: Template function implementation in user input validation.

7



Two qubit gates require lots of additional validation. Firstly, the program must check that two

qubits are still available when the user enters the key for the two-qubit gate. Secondly, applying a

two-qubit gate on the last qubit does not make sense with the definition of their action, hence the

available qubit range is reduced when the user inputs the target qubit. And lastly, an application

of a two-qubit gate must mark two qubits as unavailable, instead of one.

3.5 Advanced Features

The program makes use of several advanced C++ features. Standard Template Library (STL)

containers can be seen throughout the code. Vectors are used whenever dynamic arrays are

required, such as the occupied qubit record. Maps are used twice: for labelling gates by the

corresponding keys in the main routine and for keeping track of which gates are applied to which

qubits in the circuit layer combination routine.

1 std::map <int , component*> component_map;

2 // other code ...

3 component_map.insert(std:: make_pair(qbit_number , c));

4 // other code ...

5 for (size_t i{start}; i<= number_of_qbits; i++) {

6 if (component_map.count(i)) {

7 matrix single_component{component_map[i]->get_matrix ()};

8 combined_component= combined_component.tensor_product(single_component);

9 // check if the component is applied to two gates

10 if (single_component.get_cols ()==4) {i++;}

11 } else {

12 // assume identity if nothing specified

13 combined_component= combined_component.tensor_product(I.get_matrix ());

14 }

Listing 3: Part on the code, demonstrating the use of maps. In the for loop, one can loop over

the qubits.

The standard library complex number template class is also used as a reliable and fast complex

number implementation option. On the other hand, the matrix class was created from scratch,

utilising unique smart pointers for safe memory management. A template function was created

for the validation of two different data types of numbers, to avoid repetition. Lambda statement

was used in validating the qubit availability, as the implementation can be done concisely inside

the loop running through the occupied qubit vector.

1 bool unavailable = std:: any_of(occupied_qubits.begin (), occupied_qubits.end(),

2 [which_qubit ](int value) {

3 return value == which_qubit;

4 });

Listing 4: Lambda function in the qubit availability validation loop.

8



4 Results

The example circuit initialises the combined 3 qubit state, which corresponds to a vector of

length 23 = 8. Initialised state looks like |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩. Then, the X gate on the first

qubit flips the state to |100⟩ in the first layer. In the second layer, the CNOT flips the state

of the second qubit as the first (control) qubit is in the state 1. In the same layer, another X

gate flips the state of qubit 3, resulting the combined state of |111⟩. Finally, in the third layer

Ry(π) gate flips back the state of qubit 2 and introduces a phase of eiπ = −1, so the final state

is |101⟩ with a corresponding phase. The same calculation can be done in terms of state vectors

as follows, 

1

0

0

0

0

0

0

0


⇒



0

0

0

0

0

0

0

1


⇒



0

0

0

0

−1

0

0

0


, (4)

which is exactly what the code outputs as shown in Figure 5. The same circuit can be constructed

manually with the user input and it produces the same output as shown in the same figure.

Validation successfully rejects any invalid string values and values out of the range for integers

and doubles. Layer and 2-qubit gate validation also works as expected. A Makefile was also

made to automate the build process of a project on the Unix-like operating systems, which is

shown in Figure 6.

5 Discussion and Conclusion

In summary, the circuit simulator program achieves the aim of constructing an arbitrary quan-

tum circuit of 6 qubits and outputs the correct computation result for an example circuit, both

predefined and user constructed. It satisfies the minimal class design and functionality require-

ments. The program has an abstract base class and derived classes for components with matrix

representation. The user is able to pick any gate from the library and apply it to any qubit in

series or parallel within the rules of circuit construction. Extra functionality includes the 2-qubit

gates and validation for them, as well as dynamically created parametrised gates which provide

a full computational basis and freedom. The constructed circuit is printed out at the end of the

computation, which makes the program output much more clear. The code features both the

main principles of OOP and advanced C++ features.

As the program is modular, new gates can be easily added to expand the available computations.

Qubit class can be utilised for bookkeeping and Bloch sphere representation of the qubits. For

9



the latter, an external C++ graphical user interface library is suggested. Implementing a mea-

surement by calculating state probabilities and drawing a random number for the distribution

should be added to fully represent the probabilistic nature of quantum computation. The qubit

limit can be easily lifted if the result is used elsewhere and not in the terminal output.

Figure 5: Command-line interface output of the program. The same circuit is constructed twice,

as a preprogrammed example and a user input.

10



Makefile produces 
automatic 

compilation 
commands

Figure 6: Makefile optimising and automating the compilation procedure.

References

[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum

computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010.

[2] J. W. Z. Lau, K. H. Lim, H. Shrotriya, and L. C. Kwek, “Nisq computing: where are we

and where do we go?” AAPPS Bulletin, vol. 32, no. 1, p. 27, 2022. [Online]. Available:

https://doi.org/10.1007/s43673-022-00058-z

[3] IBM Qiskit Development Team, “Summary of quantum opera-

tions,” May 2023, accessed 15 April 2023. [Online]. Avail-

able: https://qiskit.org/documentation/tutorials/circuits/3 summary of quantum ope ra-

tions.html

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cam-

bridge: Cambridge University Press, 2010.

11


